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TBI is the best documented 
environmental risk factor for 
Alzheimer’s disease (AD), 

• In a metaanalysis of 9 studies, TBI increased 
the risk of AD ~ 1.8 fold. 

 (Mortimer et. al Int. Journal of Epidemiology 20 Suppl 2 S28-35 1991) 

• Removing the possibility of recall bias, well-
documented moderate to severe TBI in WWII 
veterans was found to be a strong risk factor 
for AD, with hazard ratios of 2.3 to 4.5. 

 (Plassman et. al. Neurology 55 1158-66 2000). 



• The victim of a single, severe 
TBI at age 22.  

• Partial recovery of cognitive 
function, but then developed a 
progressive dementia starting 
at age 32. 

• AD-like changes at the time of 
his death at 38  

 Clinton et. al. Neuropath Appl 
Neurobiol 17 69-71 1991). 

• Diffuse Aβ plaques in 46 of 
152 cases of fatal TBI, as 
young as 10 years old without 
Down syndrome or familial AD.  

 Roberts et. al. J. Neurol, Neurosurg. & 
Psychiatry 57 419-425 1994. 
 

  

Shared Pathology of TBI and AD  



Aβ plaques appear in areas of 
Diffuse Axonal Injury in Humans 

• Smith et. al., J. Neurosurgery 98 1072 
(2003) 
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Amyloid-beta deposition in Alzheimer’s 
disease is largely extracellular 

Yamaguchi et al. Am J Path 1979 

Early, diffuse plaques (arrows) from frontal 
cortex in an 81 year old with AD. 

Brendza et al. J 
Comp Neurol 2003 

Mature, neuritic plaque 
(arrowhead) 



Amyloid-beta dynamics in the 
extracellular space of the 

human brain 





Amyloid-beta deposition related to 
default activity in humans  

Buckner et al J Neurosci 2005 



Microdialysis involves exchange of extracellular fluid and 
solutes across a semi-permeable membrane.  

Cirrito et al J. Neurosci 2003 



Regulation of extracellular amyloid-
beta levels in animal models.  

Kamenetz et al., Neuron 2003 
(slice cultures) 

Cirrito et al., Neuron 2005 
(in vivo microdialysis) 



Microdialysis in the Human Brain 
Microdialysis
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Poca et al, J Neurotrauma 2006 Brody, Magnoni et al Science 2008 
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Amyloid-beta Dynamics Correlate 
with Neurological Status in the 

Injured Human Brain 
David L. Brody*, Sandra Magnoni* Kate E. Schwetye, Michael L. 
Spinner, Thomas J. Esparza, Nino Stocchetti, Gregory J. Zipfel, 

David M. Holtzman   
Washington University, St. Louis, MO and 
Ospedale Maggiore Policlinico, Milan, Italy  



Methods 
• 18 patients participated in this study: 17 with acute brain injury and 1 undergoing 

craniotomy for unruptured aneurysm clipping. 
• All protocols were approved by the Human Research Protection Offices at Washington 

University, St. Louis and the Ospedale Maggiore Policlico, Milan.  
• Written informed consent was provided by next of kin. 
• All microdialysis catheters (CMA70, 20kDa nominal MW cutoff or CMA71, 100 kDa 

nominal MW cutoff) were placed by experienced neurosurgeons in conjunction with 
another interventional procedure, typically placement of an intracranial pressure 
monitoring device.  

• Sterile human albumin was added to sterile CMA perfusion fluid to a final 
concentration of 0.15% (CMA70 catheters) or 1.5% (CMA71 catheters, for oncotic 
balance) 

• Flow rate was 0.3 µl/min (18 µl/hour) 
• Samples were acquired every 1-2 hours in CMA microdialysis tubes. 
• Samples were immediately refrigerated on ice and frozen at -80°C within 12 hours of 

acquisition. 
• 96-well plate format ELISAs were used to measure amyloid-beta. 

– Aβ1-x: m266 (recognizes aa 13-28) used to capture, 3D6 (recognizes aa 1-5) used to detect 

– Aβ1-42: 21F12 (specific for Aβ42) used to capture, 3D6 used to detect 

– Aβ1-40: 2G3 (specific for Aβ40) used to capture, 3D6 used to detect 
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Median Aβ increase was 58% over 3 days  

*** p=.0002 Wilcoxon signed rank test 

N=9 TBI patients 
with catheters in 
apparently normal 
brain regions 
(triangles) 

N=3 TBI patients 
with catheters in 
pericontusional 
regions (x-
symbols) 

N=6 SAH patients 
(open circles) 
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What about cerebrospinal fluid? 
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Aβ recovery by microdialysis is 
incomplete 
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Recovery appears to be ~30% in vivo and in vitro.  

In contrast, recovery of small molecules like glutamate, lactate, 
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et al J Neurotrauma 2005). 
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Unruptured aneurysm patient
(no neurological injury)
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What underlies these dynamcs in 
the injured brain? 

• Correlations with other microdialysis 
parameters. 

• Correlations with other aspects of cerebral 
physiology. 

• Correlations with neurological status. 
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Elevated lactate/pyruvate ratio 
reflects impaired oxidative 
metabolism. (Hillered et al J 
Neurotrauma 2005) 

Elevated lactate can be a marker 
of synaptic activity (Bero et al 
Nature Neurosci 2011)  
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Overall Neurological Status 

 



The Glasgow Coma Score 
(Teasdale and Jennett, Lancet 1974) 

Eye Opening: 1-4 

Best Verbal Response: 1-5 

Best Motor Response: 1-6 

Total: 3-15 
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Correlation with Change in Global 
Neurological Status 
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These dynamics correlating with changes in global 
neurological status are are not as clearly reflected in 
ventricular CSF amyloid-beta. 
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Acute
Brain
Injury:
[ISF Aβ ]
unknown

Stabilization:
[ISF Aβ ] stable

Recovery:
[ISF Aβ ] increases

Secondary Insults:
[ISF Aβ ] decreases

Model 

Brody, Magnoni et al, Science 2008 



What does this mean? 
• Amyloid-beta can be measured by 

microdialysis in the human brain. 
– Selected scientific questions about amyloid-

beta physiology can be addressed using 
this technique.  

– In principle, assessment of the effects of 
candidate therapeutics on amyloid-beta 
levels in the most relevant compartment- 
the human brain- could be made.  

– However, it is not feasible or ethical to 
perform microdialysis studies in many 
patients, which may limit widespread use of 
this approach.  

• Microdialysate amyloid-beta changes 
correlate with global neurological status 
changes. 
– We hypothesize that amyloid-beta levels 

correlate with neurological status because 
both are related to synaptic activity. 

– In mice, extracellular amyloid-beta levels 
are regulated by local synaptic activity. 

– It is likely that synaptic activity is reduced 
following brain injury, and increases with 
recovery. 

 

Synaptic 
Activity 

? 
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Tau Elevations in the Brain 
Extracellular Space Correlate with 

Reduced Amyloid-β Levels and Predict 
Adverse Clinical Outcomes after 
Severe Traumatic Brain Injury.  

 



Tau and Amyloid-beta dynamics 

Magnoni et al, Brain 2011 
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Tau and Amyloid-beta dynamics 
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Neurofilament Light Chain- 
Another marker of Axonal Injury 
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Unresolved Questions Regarding Amyloid-
beta Dynamics after TBI: Rationale for 

Development of an Animal Model 

Schwetye et al, Neurobiology of Disease 2010 
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Traumatic Brain Injury Reduces 
Soluble Extracellular Amyloid-β in 
Mice:  A Combined Microdialysis- 
Controlled Cortical Impact Study 

Katherine E. Schwetye, John R. Cirrito, Thomas J. 
Esparza, Christine L. Mac Donald, David M. Holtzman, 
and David L. Brody 



Controlled Cortical Impact TBI in Mice 

Brody et al., J Neurotrauma 
2007 



Combined Microdialysis and 
Controlled Cortical Impact TBI in Mice 
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Controlled 
Cortical Impact 

TBI Acutely 
Reduces 

Extracellular 
Amyloid-beta in 

Mice 

Schwetye et al, Neurobiology of Disease 2010 
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Fractional Amyloid-beta 
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Only PBS-soluble Amyloid-beta is 
affected in PDAPP mice 

Schwetye et al, Neurobiology of Disease 2010 
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Reductions in Amyloid-beta Correlate 
with Reduced Neuronal Activity 

Schwetye et al, Neurobiology of Disease 2010 



Outline 
• Introduction 
• Human Studies 

– A-beta dynamics correlate with neurological status 
– A-beta is inversely related to markers of axonal injury 

• Experimental Animal Studies 
– Soluble extracellular A-beta is reduced after TBI in 

PDAPP and Tg2576 mice 
– Insoluble intra-axonal A-beta is increased after 

TBI in 3xTg-AD and APP/PS1 mice 
• Conclusions and Future Directions 



Controlled Cortical Impact 
Traumatic Brain Injury in 3xTg-AD 
Mice Causes Acute Intra-axonal 

Amyloid-beta Accumulation 
Hien T. Tran, Frank M LaFerla, David M. Holtzman, and 

David L. Brody 



Amyloid-beta Pathology in White Matter  

Tran et al, J Neurosci 2011 



Amyloid-beta Increased only in Guan-
Soluble Fraction 

Tran et al, J Neurosci 2011 



Amyloid-beta Colocalized With 
Intracellular Markers of Axonal Injury 

Tran et al, J Neurosci 2011 



Outline 
• Introduction 
• Human Studies 

– A-beta dynamics correlate with neurological status 
– A-beta is inversely related to markers of axonal injury 

• Experimental Animal Studies 
– Soluble extracellular A-beta is reduced after TBI in 

PDAPP and Tg2576 mice 
– Insoluble intraaxonal A-beta is increased after TBI in 

3xTg-AD and APP/PS1 mice 
• Conclusions and Future Directions 



Conclusions 1 
• Abeta can be measured by microdialysis in the 

human brain. 
• Microdialysate Abeta levels do not mimic 

ventricular CSF Abeta levels. 
– Microdialysate reflects local extracellular fluid around the 

catheter, whereas CSF drains from extracellular fluid 
throughout the brain. 

• Abeta levels change substantially (up to 8-fold) 
over hours to days. 
– This is in contrast to the traditional view of Abeta as a 

peptide that slowly accumulates over many years. 
– However, it is consistent with recent studies in mouse 

brain (Cirrito et al) and human lumbar CSF (Bateman et 
al)  which have demonstrated rapid dynamics. 



Conclusions 2 
• Surprisingly, Abeta levels increase over time after injury. 

– Previous studies have suggested that total brain homogenate 
Abeta levels may be acutely increased after TBI.  

– It is possible that there is a dissociation between soluble, 
extracellular Abeta levels measured by microdialysis and total 
brain Abeta levels, which include intracellular and extracellular, 
soluble and insoluble Abeta. 

• Microdialysate Abeta changes may correlate with global 
neurological status changes. 
– These changes may be consistent with recent findings that 

extracellular Abeta levels are governed by local synaptic activity. 
– It is likely that synaptic activity is reduced following TBI, and 

increases with recovery. 
– Other correlates of low amyloid-beta (high lactate/pyruvate ratio, 

low glucose, high ICP, extremes of temperature) all would be 
expected to impair synaptic activity. 

 



Conclusions 3 
• Amyloid-beta levels are decreased in the extracellular 

fluid in PDAPP, Wild-type, and Tg-2576 mice.  
– This result is concordant human microdialysis studies. 

• Amyloid-beta levels are increased in the insoluble form 
within injured axons in 3xTg-AD and APP/PS1 mice,  
– This pathology is consistent with what is seen in human TBI 

patients and pigs subjected to experimental TBI.  
– This result suggests that presenilin function may drive 

intraaxonal amyloid-beta production or aggregation, as both of 
these mice have human presenilin mutations.   

• Amyloid-beta levels are not uniform, but have distinct 
dynamics in different compartments.  
 



Distinct dynamics in different 
compartments 

Schwetye et al, Neurobiology of Disease 2010 
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How Does It All Fit Together? 

 
SYNAPTIC ACTIVITY 

mouse 
studies 

human studies 

? 

? 
ISF Aβ 

Schwetye et al, Neurobiology of Disease 2010 

Axonal Injury  
(Increased tau, NF-L) 
 
Reduced Neuronal 
and Synaptic Activity 
 
Reduced Extracellular 
Soluble Amyloid-beta 
 

Increase 
Insoluble 
Intraaxonal 
Amyloid-beta 
 



Future Directions 
• Detection of Abeta oligomers in patients with AD: 

– Question: under what circumstances could microdialysis be 
performed in AD patients? 

• Amyloid plaque imaging (PIB)-guided catheter placement. 
– Coregistration of PET with CT marking catheter location 

• Pharmacodynamic studies of Abeta- modifying therapeutics 
in the human brain. 
– Candidates: gamma secretase inhibitors, beta secretase inhibitors, 

statins… 
• Diffusion Tensor Imaging- guided probe placement  

– Axonal injury vs. normal white matter. 
– Additional microdialysis markers of axonal injury: Tau, NF-L.  

• Correlations with EEG  
• Comparisons across ApoE genotypes. 

– ApoE4 is associated with worse outcomes following TBI, and 
increased risk of AD. [Talk and Poster from Rachel Bennett] 
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Overall, brain ISF Aβ levels were highest when patients were not sedated (**P <0.005, ANOVA 
followed Bonferroni pairwise post-hoc testing). Sedation with propofol was associated with lower 
Aβ levels than sedation with benzodiazepines (** P =.00025). However, sedation was not varied 
systematically; less severely injured patients typically received less intensive sedation, and the 
choice of agents was left to the discretion of the treating physicians. B. There was no difference in 
the fold changes in Aβ associated with times when sedation was increased vs. times when 
sedation was decreased (P=0.66). Ratios are slightly greater than 1 because brain ISF Aβ in general 
was rising over time. When this analysis was restricted to changes in short-acting agents 
(primarily propofol, midazolam, and fentanyl), the results were essentially unchanged (P=0.42).  
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