Frandemiche ML, De Seranno S, Rush T, Borel E, Elie A, Arnal I, Lanté F, Buisson A.
Activity-dependent tau protein translocation to excitatory synapse is disrupted by exposure to amyloid-beta oligomers.
J Neurosci. 2014 Apr 23;34(17):6084-97.
PubMed.
This is a very interesting and elegant study that adds support for the idea that tau is normally present in dendrites and plays a physiological role in normal synaptic functioning. The movement of tau into spines with neuronal activity is demonstrated in both dissociated cultured neurons and hippocampal slices, and by both imaging and biochemical approaches. The implications of this change in tau localization, and its effects on postsynaptic function, will be an important focus for future studies. It seems unlikely that this postsynaptic tau plays a critical role in long-term potentiation (LTP), given that multiple studies have found that tau knockout mice have normal hippocampal LTP (Roberson et al., 2011; Shipton et al., 2011). However, postsynaptic tau in spines may play a role in controlling susceptibility to hyperexcitation and epileptiform activity and/or in regulating long-term depression, both of which are altered in tau knockout mice (Roberson et al., 2007, 2011; Ittner et al., 2011; Holth et al., 2013; DeVos et al., 2013; Kimura et al., 2013).
Tau in spines may also play an important role in disease, of course. Another interesting aspect of this study is the proposition that there are differences between the tau translocation into spines induced by Aβ and the tau translocation into spines induced by synaptic activity. This suggests that tau in spines is detrimental only under certain circumstances, and it will be important to further elucidate the differences between physiological and pathological tau in spines.
References:
Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F, Wu T, Hamto P, Devidze N, Yu GQ, Palop JJ, Noebels JL, Mucke L.
Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease.
J Neurosci. 2011 Jan 12;31(2):700-11.
PubMed.
Shipton OA, Leitz JR, Dworzak J, Acton CE, Tunbridge EM, Denk F, Dawson HN, Vitek MP, Wade-Martins R, Paulsen O, Vargas-Caballero M.
Tau protein is required for amyloid {beta}-induced impairment of hippocampal long-term potentiation.
J Neurosci. 2011 Feb 2;31(5):1688-92.
PubMed.
Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L.
Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model.
Science. 2007 May 4;316(5825):750-4.
PubMed.
Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F, Wu T, Hamto P, Devidze N, Yu GQ, Palop JJ, Noebels JL, Mucke L.
Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease.
J Neurosci. 2011 Jan 12;31(2):700-11.
PubMed.
Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wölfing H, Chieng BC, Christie MJ, Napier IA, Eckert A, Staufenbiel M, Hardeman E, Götz J.
Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models.
Cell. 2010 Aug 6;142(3):387-97. Epub 2010 Jul 22
PubMed.
Holth JK, Bomben VC, Reed JG, Inoue T, Younkin L, Younkin SG, Pautler RG, Botas J, Noebels JL.
Tau loss attenuates neuronal network hyperexcitability in mouse and Drosophila genetic models of epilepsy.
J Neurosci. 2013 Jan 23;33(4):1651-9.
PubMed.
Devos SL, Goncharoff DK, Chen G, Kebodeaux CS, Yamada K, Stewart FR, Schuler DR, Maloney SE, Wozniak DF, Rigo F, Bennett CF, Cirrito JR, Holtzman DM, Miller TM.
Antisense Reduction of Tau in Adult Mice Protects against Seizures.
J Neurosci. 2013 Jul 31;33(31):12887-97.
PubMed.
Kimura T, Whitcomb DJ, Jo J, Regan P, Piers T, Heo S, Brown C, Hashikawa T, Murayama M, Seok H, Sotiropoulos I, Kim E, Collingridge GL, Takashima A, Cho K.
Microtubule-associated protein tau is essential for long-term depression in the hippocampus.
Philos Trans R Soc Lond B Biol Sci. 2014 Jan 5;369(1633):20130144. Print 2014 Jan 5
PubMed.
I enjoyed reading this paper. The study adds to the notion that a prime function of tau is that of a scaffolding protein, not only in the axon but also in the dendrite where tau interacts, as this study shows, also with filamentous actin. Interesting is the role specific phosphorylation reactions have in activity—and Aβ-dependent tau localization. While tau is often perceived as being either normally phosphorylated or hyperphosphorylated, this study underscores the notion that there is a physiological role for distinct phosphorylation sites (see Fig. 9). I am convinced that the future will see many more studies into tau trafficking and how it is regulated by site-specific phosphorylation.
Comments
University of Alabama at Birmingham
This is a very interesting and elegant study that adds support for the idea that tau is normally present in dendrites and plays a physiological role in normal synaptic functioning. The movement of tau into spines with neuronal activity is demonstrated in both dissociated cultured neurons and hippocampal slices, and by both imaging and biochemical approaches. The implications of this change in tau localization, and its effects on postsynaptic function, will be an important focus for future studies. It seems unlikely that this postsynaptic tau plays a critical role in long-term potentiation (LTP), given that multiple studies have found that tau knockout mice have normal hippocampal LTP (Roberson et al., 2011; Shipton et al., 2011). However, postsynaptic tau in spines may play a role in controlling susceptibility to hyperexcitation and epileptiform activity and/or in regulating long-term depression, both of which are altered in tau knockout mice (Roberson et al., 2007, 2011; Ittner et al., 2011; Holth et al., 2013; DeVos et al., 2013; Kimura et al., 2013).
Tau in spines may also play an important role in disease, of course. Another interesting aspect of this study is the proposition that there are differences between the tau translocation into spines induced by Aβ and the tau translocation into spines induced by synaptic activity. This suggests that tau in spines is detrimental only under certain circumstances, and it will be important to further elucidate the differences between physiological and pathological tau in spines.
References:
Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F, Wu T, Hamto P, Devidze N, Yu GQ, Palop JJ, Noebels JL, Mucke L. Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. J Neurosci. 2011 Jan 12;31(2):700-11. PubMed.
Shipton OA, Leitz JR, Dworzak J, Acton CE, Tunbridge EM, Denk F, Dawson HN, Vitek MP, Wade-Martins R, Paulsen O, Vargas-Caballero M. Tau protein is required for amyloid {beta}-induced impairment of hippocampal long-term potentiation. J Neurosci. 2011 Feb 2;31(5):1688-92. PubMed.
Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model. Science. 2007 May 4;316(5825):750-4. PubMed.
Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F, Wu T, Hamto P, Devidze N, Yu GQ, Palop JJ, Noebels JL, Mucke L. Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. J Neurosci. 2011 Jan 12;31(2):700-11. PubMed.
Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wölfing H, Chieng BC, Christie MJ, Napier IA, Eckert A, Staufenbiel M, Hardeman E, Götz J. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell. 2010 Aug 6;142(3):387-97. Epub 2010 Jul 22 PubMed.
Holth JK, Bomben VC, Reed JG, Inoue T, Younkin L, Younkin SG, Pautler RG, Botas J, Noebels JL. Tau loss attenuates neuronal network hyperexcitability in mouse and Drosophila genetic models of epilepsy. J Neurosci. 2013 Jan 23;33(4):1651-9. PubMed.
Devos SL, Goncharoff DK, Chen G, Kebodeaux CS, Yamada K, Stewart FR, Schuler DR, Maloney SE, Wozniak DF, Rigo F, Bennett CF, Cirrito JR, Holtzman DM, Miller TM. Antisense Reduction of Tau in Adult Mice Protects against Seizures. J Neurosci. 2013 Jul 31;33(31):12887-97. PubMed.
Kimura T, Whitcomb DJ, Jo J, Regan P, Piers T, Heo S, Brown C, Hashikawa T, Murayama M, Seok H, Sotiropoulos I, Kim E, Collingridge GL, Takashima A, Cho K. Microtubule-associated protein tau is essential for long-term depression in the hippocampus. Philos Trans R Soc Lond B Biol Sci. 2014 Jan 5;369(1633):20130144. Print 2014 Jan 5 PubMed.
The University of Queensland
I enjoyed reading this paper. The study adds to the notion that a prime function of tau is that of a scaffolding protein, not only in the axon but also in the dendrite where tau interacts, as this study shows, also with filamentous actin. Interesting is the role specific phosphorylation reactions have in activity—and Aβ-dependent tau localization. While tau is often perceived as being either normally phosphorylated or hyperphosphorylated, this study underscores the notion that there is a physiological role for distinct phosphorylation sites (see Fig. 9). I am convinced that the future will see many more studies into tau trafficking and how it is regulated by site-specific phosphorylation.