In this study, the authors have found that TGF-β signaling inhibits the natural properties of macrophages to clear Aβ and infiltrate the CNS of APP mice. Knocking out such signaling events was found to improve both the brain infiltration of bone marrow-derived macrophages/microglia and their clearance of Aβ, which prevented the cognitive decline in mouse models of AD.
These data fit very well with the novel concept that systemic innate immune cells have the capacity to fight against toxic proteins but do not do it in an efficient manner. That's probably because of anti-inflammatory signals (e.g., TGF-β), as elegantly demonstrated by Town and colleagues.
We recently reported that Toll-like receptor 2 gene deletion is also associated with Aβ42 accumulation and cognitive impairment, while TLR2 gene expression in bone marrow-derived cells rescued such a memory deficit (Richard et al., 2008). Of great interest here is that APPtg/TLR2 knockout mice had a spontaneous increase in TGF-β gene expression in immune cells adjacent to the senile plaques. We can therefore propose that macrophages are not properly activated and do not efficiently infiltrate the CNS of APP mice. This natural innate immune mechanism against endogenously produced toxic elements may prevent chronic diseases, such as AD (see Soulet and Rivest, 2008). Improving both the infiltration and immune properties of these cells will hopefully soon be an effective new therapy to cure AD. The debate about the physiological relevance of these cells in the CNS will be over once patients are cured.
References:
Richard KL, Filali M, Préfontaine P, Rivest S.
Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1-42 and delay the cognitive decline in a mouse model of Alzheimer's disease.
J Neurosci. 2008 May 28;28(22):5784-93.
PubMed.
Soulet D, Rivest S.
Bone-marrow-derived microglia: myth or reality?.
Curr Opin Pharmacol. 2008 Aug;8(4):508-18.
PubMed.
Comments
In this study, the authors have found that TGF-β signaling inhibits the natural properties of macrophages to clear Aβ and infiltrate the CNS of APP mice. Knocking out such signaling events was found to improve both the brain infiltration of bone marrow-derived macrophages/microglia and their clearance of Aβ, which prevented the cognitive decline in mouse models of AD.
These data fit very well with the novel concept that systemic innate immune cells have the capacity to fight against toxic proteins but do not do it in an efficient manner. That's probably because of anti-inflammatory signals (e.g., TGF-β), as elegantly demonstrated by Town and colleagues.
We recently reported that Toll-like receptor 2 gene deletion is also associated with Aβ42 accumulation and cognitive impairment, while TLR2 gene expression in bone marrow-derived cells rescued such a memory deficit (Richard et al., 2008). Of great interest here is that APPtg/TLR2 knockout mice had a spontaneous increase in TGF-β gene expression in immune cells adjacent to the senile plaques. We can therefore propose that macrophages are not properly activated and do not efficiently infiltrate the CNS of APP mice. This natural innate immune mechanism against endogenously produced toxic elements may prevent chronic diseases, such as AD (see Soulet and Rivest, 2008). Improving both the infiltration and immune properties of these cells will hopefully soon be an effective new therapy to cure AD. The debate about the physiological relevance of these cells in the CNS will be over once patients are cured.
References:
Richard KL, Filali M, Préfontaine P, Rivest S. Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1-42 and delay the cognitive decline in a mouse model of Alzheimer's disease. J Neurosci. 2008 May 28;28(22):5784-93. PubMed.
Soulet D, Rivest S. Bone-marrow-derived microglia: myth or reality?. Curr Opin Pharmacol. 2008 Aug;8(4):508-18. PubMed.