Hiruma H, Katakura T, Takahashi S, Ichikawa T, Kawakami T. Glutamate and amyloid beta-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. J Neurosci. 2003 Oct 1;23(26):8967-77. PubMed.
Recommends
Please login to recommend the paper.
Comments
University of California, Irvine
A number of experimental observations support a role for axonal transport defects in Alzheimer¹s disease (Morfini et al., 2002). Two recent papers reporting impaired axonal transport caused by presenilin mutations and Aβ protein, respectively, lend additional support to this hypothesis. Presenilin mutations increase GSK3β activity leading to abnormal kinesin phosphorylation and impaired axonal transport (Pigino et al., 2003; see also ARF live discussion). The molecular mechanism by which Aβ inhibits fast axonal transport (FAT) in neurons is not clear. According to results by Hiruma and coworkers in this study, Aβ-mediated inhibition of FAT involves actin polymerization and aggregation; however, the study does not present evidence of the molecular mechanism(s) that might lead to changes in microfilament polymerization. One possibility is that Aβ abnormally activates focal adhesion signals, resulting in misregulation of actin dynamics leading to impaired axonal transport and neuritic dystrophy (Grace and Busciglio, 2003). This hypothesis is supported by the presence of activated focal adhesion proteins in dystrophic neurites surrounding Aβ plaque cores in the Alzheimer's brain. Interestingly, we found in the same study that activation of focal adhesion signaling may also lead to a direct induction of MAP kinase and GSK3β, two kinases that appear to be involved in tau hyperphosphorylation, which in turn may lead to microtubule destabilization and impaired axonal transport (see ARF comment). In addition, other studies suggest that a direct accumulation of Aβ and APP metabolic derivatives in neuronal processes may be responsible for trafficking alterations (Bayer et al., 2001; Wirths et al., 2002). Collectively, these results indicate that Aβ may alter axonal transport in neurons in a number of different ways. Future studies directed to advance our understanding of the role of axonal transport defects in AD neuropathology are warranted.
References:
Morfini G, Pigino G, Beffert U, Busciglio J, Brady ST. Fast axonal transport misregulation and Alzheimer's disease. Neuromolecular Med. 2002;2(2):89-99. PubMed.
Pigino G, Morfini G, Pelsman A, Mattson MP, Brady ST, Busciglio J. Alzheimer's presenilin 1 mutations impair kinesin-based axonal transport. J Neurosci. 2003 Jun 1;23(11):4499-508. PubMed.
Grace EA, Busciglio J. Aberrant activation of focal adhesion proteins mediates fibrillar amyloid beta-induced neuronal dystrophy. J Neurosci. 2003 Jan 15;23(2):493-502. PubMed.
Bayer TA, Wirths O, Majtényi K, Hartmann T, Multhaup G, Beyreuther K, Czech C. Key factors in Alzheimer's disease: beta-amyloid precursor protein processing, metabolism and intraneuronal transport. Brain Pathol. 2001 Jan;11(1):1-11. PubMed.
Wirths O, Multhaup G, Czech C, Feldmann N, Blanchard V, Tremp G, Beyreuther K, Pradier L, Bayer TA. Intraneuronal APP/A beta trafficking and plaque formation in beta-amyloid precursor protein and presenilin-1 transgenic mice. Brain Pathol. 2002 Jul;12(3):275-86. PubMed.
Make a Comment
To make a comment you must login or register.