Paper
- Alzforum Recommends
Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer's disease. Nature. 2008 Feb 7;451(7179):720-4. PubMed.
Please login to recommend the paper.
Comments
University of Antwerp
This is another state-of-the-art paper by the group active on in vivo two-photon imaging on mouse models of amyloidogenesis, and it gives important clues for Alzheimer disease pathogenesis. The paper shows, for the first time, that dense plaques in mouse models reach their maximum size in about a day and thereafter maintain a status quo. This does not follow the simple, size-dependent law of mass action, as even small plaques do not grow any further. This is a most amazing finding and abrogates all prior preconceived notions that plaques grow slowly over life and that given time, all plaques would reach a maximum size. Importantly, the quick growth of dense plaques suggests that dense plaques grow not only with Aβ monomer addition, but perhaps also by capturing oligomeric intermediates at the fiber ends, as shown earlier for prion proteins (Serio et al., 2000; Collins et al., 2004).
Why dense plaques stop growing suddenly is just as intriguing. Quick recruitment of macrophages at sites of dense plaque formation, as shown here, could be one mechanism, but the provided images do not show a complete walling off. This suggests that other, less simple mechanisms are at play, including local Aβ production and trafficking.
A recent, interesting study in a mouse model of amyloidogenesis showed that FAD APP mutations cause axonal trafficking defects and that that, in turn, stimulates the proteolytic processing of APP and generation of Aβ (Stokin et al., 2005). This fit well with development of dystrophic neurites (DNs) in these mice, preceding plaques by more than a year (Stokin et al., 2005). Meyer-Luehmann and colleagues, studying the temporal relation between rapidly growing plaques and DNs, showed that although DNs were observed in plaque-free areas, DNs were more pronounced near plaques. Conversely, DNs in the plaque-free areas did not seem to cause dense plaques, and mice did not deposit diffuse plaques at this age. It would be worth studying this in more detail over a shorter time window, as DNs were also observed to change morphologies and even resolve, leaving open the possibility that diffuse or pre-diffuse plaques are formed but are quickly turned over. Moreover, the current resolution of this technique does not permit visualization of small, dense plaques, and at times it leaves the reader guessing whether some of the punctate blue staining might potentially be “sub-microscopic” dense plaques (for instance, boxed areas in Figure 1). Also, sometimes the capillary network is strangely absent, for instance, some panels of Figure 1 representing APPswe/PS1d9xYFP mice, where the plaque-vessel relationship has been alluded to on a small sample size.
Clearly, more work is needed before we can have all the answers. Meanwhile, despite some of its limitations, in vivo multiphoton imaging remains a valuable technique. We hope to see more results coming out from this technology, especially with higher objectives, use of confocal settings, and perhaps a shorter time lapse, even though that would make it even more labor-intensive. Parallel detailed histological analysis including ultrastructural microscopy should make it even more interesting.
References:
Collins SR, Douglass A, Vale RD, Weissman JS. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol. 2004 Oct;2(10):e321. PubMed.
Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer's disease. Nature. 2008 Feb 7;451(7179):720-4. PubMed.
Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science. 2000 Aug 25;289(5483):1317-21. PubMed.
Spires TL, Meyer-Luehmann M, Stern EA, McLean PJ, Skoch J, Nguyen PT, Bacskai BJ, Hyman BT. Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci. 2005 Aug 3;25(31):7278-87. PubMed.
Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LS. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science. 2005 Feb 25;307(5713):1282-8. PubMed.