Paper
- Alzforum Recommends
Karlnoski RA, Rosenthal A, Kobayashi D, Pons J, Alamed J, Mercer M, Li Q, Gordon MN, Gottschall PE, Morgan D. Suppression of amyloid deposition leads to long-term reductions in Alzheimer's pathologies in Tg2576 mice. J Neurosci. 2009 Apr 15;29(15):4964-71. PubMed.
Please login to recommend the paper.
Comments
Hertie Institute for clinical brains research
This is an intriguing and nice study. It tests the hypothesis whether Aβ plaques are in direct equilibrium with soluble Aβ. The results point to an accumulation model, and the given explanation for discrepancies with other well-reproducible observations is evident. It seems appropriate to speculate that plaque formation in vivo is a two-step process that involves a slow buildup of an Aβ seed (which contains oligomeric Aβ forms) and is followed by a rather fast and reversible (e.g., through immunotherapy) second step of growth to a histologically detectable and well-defined aggregate. Assuming that this is correct, it raises further questions that are extremely interesting:
1. Why is such a small seed stable enough not to be dissolved upon treatment with antibodies?
2. Why do at least some antibodies permanently block the conversion from a seed to a mature plaque (e.g., Meyer-Luehmann et al., 2006?
3. Is it possible to isolate such “core seeds” and will they still function as such when transferred to another host animal?
4. If so, what other components are contained in such a “core seed”?
References:
Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science. 2006 Sep 22;313(5794):1781-4. PubMed.